9/23/21

UMassAmbherst

The Commonwealth's Flagship Campus

Lecture 6
Hashing

Overview

Hash table

Hash functions

Collision resolution

Map data type

Analysis of hashing

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

9/23/21

Objective
* Understand the principles of hash tables and
hash functions

* Learn how to resolve collisions in hash
functions

* Be able to implement hash tables and hash

functions
ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink
2
Hashing

 Data structure that can be searched in O(1)
time

* Need to know more about where items are
when searched for in collection

* Single comparison if item is where it should be

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 3

3

9/23/21

Hash Table

* Collection of items stored in a way which

makes them easy to find later

e Position in hash table often called slot

* Holds an item

* Named by integer value

* Initially, every slot is empty

ECE 241 — Data Structures Fall 2021

© 2021 Mike Zink

4

Hash Table

* Implement hash table using list

* Each element initialized to special Python

value None

e Hash table of size m =11

* m slots

* Named O through 10

None

None

None

None

None None

None

None

ECE 241 — Data Structures Fall 2021

© 2021 Mike Zink

5

9/23/21

Hash Function
* Mapping between item and slot where it
belongs in is called hash function

* Function take any item in collection and return
integer in range of slot names (O, ..., m—1)

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 6

6

* Set of integer items 54, 26,93, 17, 77, and 31

* “remainder method” takes item and dives it by
table size => h(item) = item%11

Item Hash Value

Hash Function: Example

54 10
26 4
93 5
17 6
77 0
31 9
ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 7

9/23/21

Hash Function: Example

* After hash values computed, insert each item

into hash table

* 6 of 11 slots are now occupied => load factor
A = numberofitems/tablesize (here A = 6/11)

0 1 2 3 4

6

9

10

None None None 26 93

17

None

31

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

8

Hash Function: Example

* Use hash function to compute slot name and

check if item is present

* O(1) since constant amount of time is required

* to compute hash value

* index hash table at that location

e => Constant time search algorithm

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

9

Hash Function: Issue
* Only works if each item maps to unique
location in hash table
* If item 44 is next in collection
* Hash value 44%11 ==
e Same index as for value 77

* Collision

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

9/23/21

10

10

Perfect Hash Function

* Function that maps each item into a unique slot

e Perfect hash function can be constructed if items
never change

* No systematic way to construct perfect hash
function given arbitrary collection

* Good news: hash function does not need to be
perfect

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

11

11

Perfect Hash Function: Approach |

* Increase size of hash table

* Each value in the item range can be
accommodated

* Unique slot for each item

* Practical for small number of items, not feasible
when number is large

* [tems: 9-digit SSN => ~one billion slots

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

9/23/21

12

12

Perfect Hash Function: Goal

e Goal:
* Minimize collisions
* Easy to compute

* Evenly distributes items in hash table

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

13

13

9/23/21

UMassAmbherst
Perfect Hash Function: Folding Method _

* Divide item into equal size pieces (might not work for
last one)

* Add pieces together to calculate hash value
* Example:
* Phone number: 413-545-0444 (41, 35, 45, 4, 44)
*41+35+45+4+44 =169
*169% 11 =4
* 4t slot for 413-545-0444

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 14

14

Perfect Hash Function: Mid-Square Method

* First square item, then extract some portion of
resulting digits

* Example:
° ltem 44 => 442 =1,936
* Extracting middle two digits => 93
*93%11=5

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 15

15

Perfect Hash Function: Comparison

Item Remainder Mid-Square
54 10
26
93
17
77
31

|| |O0 |
|~ |O|O|IN|W®W

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

9/23/21

16

16

Collision Resolution

* How to place two items in hash table if they hash to
same slot?

* Since avoiding collisions is impossible, collision
resolution is essential

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

17

17

table)

ECE 241 — Data Structures Fall 2021

© 2021 Mike Zink

Collision Resolution: Open Addressing

* Try to find another open slot to hold item causing
collision

e Start at original hash position and sequentially move
through slots (loop around to start to cover entire

* Systematically probing each slot one at a time =>
linear probing

9/23/21

18

18

0

1

3 4

]

6

7

Collision Resolution: Open Addressing

9

10

77

None

None

None 26

93

17

None

None

31

54

* |nsert 89
o Slot<Os Hréady dctophely

. %Ceua?‘i%gobing =>slot 1 also

* bicempiedobhm=staat3

4

5

6

7

10

77

44

55

26

93

17

None

None

54

ECE 241 — Data Structures Fall 2021

© 2021 Mike Zink

19

19

10

Collision Resolution: Search
* Look up 93

* Hash value =>5

* Slot value => 93
* Look up 20

* Hash value =>9

* Slot value => 31

* Sequential search starting at index 10

0 or empty slot

ECE 241 — Data Structures Fall 2021

© 2021 Mike Zink

9/23/21

20

20

Collision Resolution: Clustering

* Negative impact when inserting other items

* Example of inserting 20 (hashing to 0)

* If many collisions occur for same hash value, number of
surrounding slots will be filled

10

55

20

26

93

None

None

31

54

ECE 241 — Data Structures Fall 2021

© 2021 Mike Zink

21

21

11

* Skip slots

collision

0 1

* Reduce clustering

3

Collision Resolution: Slot Skipping

* Example: plus 3 probing

4

* More evenly distribute items that have caused

None

44

26 93

None

31

ECE 241 — Data Structures Fall 2021

© 2021 Mike Zink

9/23/21

22

22

ECE 241 — Data Structures Fall 2021

Collision Resolution: Rehashing

© 2021 Mike Zink

* General: rehash(pos) = (pos + skip) % sizeoftable

* Note: skip such that all slots in table will be used

* Rehash “plus 3”: rehash(pos) = (pos + 3) % sizeoftable

» Often prime number is used (11 in case of example)

* Linear probing: rehash(pos) = (pos + 1) % sizeoftable

23

23

12

7,9

0 1 2

3

4
4

*H h+1,h+4 h+9 h+16

* Quadratic probing uses skip of successive squares

5

6

7

9

10

77 44 20

55

26

93

17

None

None 31

54

ECE 241 — Data Structures Fall 2021

© 2021 Mike Zink

9/23/21

Collision Resolution: Quadratic Probinm

* Rehash function that increments have value by 1, 3, 5,

24

24

Chaining

item is present
0 1 2

* Many items at same location

e Search: use hash function then search to decide wether

None None

None

ECE 241 — Data S

25

25

13

Implementing Hash Table

* Dictionary => data type to store key:value pairs
 Key is used to look up associated data value

* Often referred to as map

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

9/23/21

26

26

Map: Abstract Data Type

creates a new, empty map; returns an empty map
collection.
adds new key-value pair; if key already

in map, replace old with new value
returns value stored in map or

otherwise
delete key-value pair using statement

returns number of key-value pairs stored in map
returns for statement ,
otherwise

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

27

27

14

9/23/21

Map

* Benefit: given key look up associated data quickly
* Implementation that supports efficient search

* Hash table potentially O(1) performance

28

Hash Table Implementation

e Class uses two lists
. holds keys
. holds value

* Initial size 11 in example

HashTable:
():

.Size =

.slots = [
.data = [

29

15

9/23/21

30

Hash Table Implementation

put (key,data):
hashvalue = .hashfunction(key

.slots[hashvalue] ==
.slots[hashvalue] = key
.data[hashvalue] = data

.slots[hashvalue] == key:
.data[hashvalue] = data

nextslot = .rehash(hashvalue (
.slots[nextslot] !=

.slots[nextslot] |= key

nextslot = .rehash(nextslot (

.slots[nextslot] ==
.slots [nextslot]l=key
.datal[nextslot]=data

.data[nextslot] = data

\

.slots))

.slots))

Hash Table Implementation

hashfunction(key,size):
key%size

rehash (oldhash,size):
(oldhash+1)%size

31

16

9/23/21

Hash Table Implementation

get(key):
startslot = .hashfunction(key

data
stop
found =
position = startslot
.slots[position] !=
found
.slots[position] == key:
found =
data = .datalposition]

position= .rehash(position
position == startslot:
stop =
data

32
|
Hash Table Implementation
(key):
.get(key)
(key,data):
.put(key,data)
* Overload and to allow
using “]”
* This will make index operator available
33

17

9/23/21

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 34

Hash Table Analysis

* Best case: O(1)
* Analyze load factor 2
* Small A -> lower chance of collisions

* Large A->table is filling up, more collisions

34

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 35

Hash Table Analysis
* Open addressing with linear probing

1 1
* Successful search 5(1 + m)

1 1y
* Unsuccessful search 5<1+(m))
e Chaining:
e Successful search 1 +/1T

* Unsuccessful search 1

35

18

9/23/21

Next Steps

* Next lecture on Tuesday
* Discussion on Thursday

* Homework due Thursday

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 36
36

UMassAmbherst

The Commonwealth's Flagship Campus

19

